
Computer Science 294 Lecture 9 Notes

Daniel Raban

February 14, 2023

1 DNFs and Random Restrictions

1.1 Concentration and computability of DNFs

Our previous topic was about how if a function is concentrated on not too many Fourier
coefficients, then it is easy to learn. Now, we will see how to show that certain classes of
functions are Fourier concentrated.

Definition 1.1. A DNF is an Or of And functions.

Example 1.1. A DNF looks like

(x1 ∧ x2 ∧ x7)︸ ︷︷ ︸
term

∨(x2 ∧ x5) ∨ · · · .

Definition 1.2. The width of a DNF is the maximum number of literals in a term. The
size is the number of terms.

From its truth table, any boolean function has a DNF of size ≤ 2n and width ≤ n
computing it.

Definition 1.3. A CNF is an And of Or functions.

Example 1.2. A CNF looks like

(x17 ∨ x8 ∨ x9)︸ ︷︷ ︸
clause

∧ · · · .

De Morgan’s laws tells us that if f = T1 ∨ T2 ∨ · · · ∨ Tn, then

¬f = (¬T1) ∧ · · · ∧ (¬Tm) = C1 ∧ · · · ∧ Cn

is a CNF.

1

Exercise 1.1. If f s computable by a size s and depth d decision tree, then f can be
computed by a size s and width d DNF (or CNF).

Proposition 1.1. Suppose f is computable by a width w DNF. Then I(f) ≤ 2w.

Here is a strengthening we won’t prove:

Theorem 1.1 (Amano). Suppose f is computable by a width w DNF. Then I(f) ≤ w.

Amano’s theorem is tight because parity on w bits can be written as a width w DNF.

Proof. Recall that

I(f) =
of sensitive edges

2n−1
.

Every input x that satisfies a width w DNF has at most w neighbors y ∼ x (y and x differ
in one variable) that don’t satisfy the DNF.

≤ #{x : f(x) = True} · w
2n−1

≤ 2nw

2n−1

= 2w.

Corollary 1.1. Width w DNFs are ε-concentrated up to degree w/ε.

Corollary 1.2. Width w DNFs can be PAC learned (under the uniform distribution) from
random labeled examples in time nO(w).

Exercise 1.2. If f is computable by a size sDNF, then for all ε > 0, there is a g computable
by width log(s/ε) DNF such that dist(f, g) ≤ ε.

2

Corollary 1.3. Size s DNFs are ε-concentrated up to degree log(s/ε)/ε.

Corollary 1.4. Size s DNFs can be PAC learned (under the uniform distribution) from
random labeled examples in time nO(log s).

Next time we will show the following theorem, which is an improvement.

Theorem 1.2 (Mansour). Width w DNFs are ε-concentrated on at most wO(w log(1/ε))

coefficients. All these coefficients are up to degree O(w log(1/ε)).

Conjecture 1.1 (Mansour’s conjecture). Width w DNFs are 0.01-concentrated on 2O(w)

coefficients. That is, size s DNFs are 0.01-concentrated on sO(1) coefficients.

With the Goldreich-Levin algorithm, this would imply that size s DNFs are learnable in
polynomial time. To prove Mansour’s theorem, we will introduce the technique of random
restrictions.

1.2 Random restrictions

The idea is that it can be easier to analyze a function after assigning some of the bits.
Then we translated results on the restricted function to results on the original function.

Example 1.3. The DNF x1∧· · ·∧xn might seem complicated because it has width n, but
if we randomly assign some constant fraction of the bits, then at least one of them should
be false, which greatly simplifies the DNF.

Definition 1.4 (Restriction). Let f : {±1}n → {±1}, J ⊆ [n] be the set of coordinates

we’re going to keep alive, and z ∈ {±1}J be an assignment for the rest of the coordinates.
The restriction of f is fJ,z : {±1}J → {±1} with

fJ,z(y) = f(y︸︷︷︸
J

, z︸︷︷︸
J

).

Example 1.4. For n = 5 and J = {1, 3, 5}, we can denote the non-restricted variables as
*. So we could have z = (∗, 1, ∗,−1, ∗).

Example 1.5. The Multiple XOR function is

MUX(x1, x2, x3) =

{
x2 if x1 = 1

x3 if x1 = −1.

The restriction to x2, x3 with x1 = 1 is

MUX{2,3},1(x2, x3) = x2.

The restriction to x1, x2 with x3 = −1 is

MUX{1,2},−1 =

{
x2 if x1 = 1

x2 if x1 = −1
= min(x1, x2).

3

We can also think of fJ,z : {±1}n → {±1} as f(y) = f(yJ , z). So we don’t need to
notationally keep track of how many variables fJ,z is a function of.

Proposition 1.2. For S ⊆ [n],

f̂J,z(S) =

{
0 S 6⊆ J∑

T⊆J f̂(S ∪ T)
∏

i∈T zi S ⊆ J

Proof. Write fJ,z(y) = f(yJ , z). Then

f̂J,z(S
∗) = EY [fJ,z(Y)χS∗(Y)]

Recall that fJ,z(y) = f(yJ , z) =
∑

S f̂(S)χS(yJ , z) =
∑

S⊆J
∑

T⊆J f̂(S ∪ T)χS(Yj)χT (z)
and plug this in.

= EY

∑
S⊆J

∑
T⊆J

f̂(S ∪ T)χS(Yj)χT (z)χS∗(Y)


=

∑
S⊆J

∑
T⊆J

f̂(S ∪ T)χT (z)EY χS(Yj)χS∗(Y)]︸ ︷︷ ︸
1{S=S∗}

=

{∑
T⊆J f̂(S∗ ∪ T)χT (z) S∗ ⊆ J

0 otherwise.

The above is for fixed restrictions. Usually, we want to pick the coordinates that we keep
at random and assign random bits to the other coordinates. First, consider the common
scenario where J is fixed and z is uniformly random. Then for fixed S ⊆ J ,

h(z) := f̂J,z(S) =
∑
T⊆J

f̂(S ∪ T)χT (z).

We have
EZ [h(Z)] = f̂(S),

EZ [h(Z)2] =
∑
T⊆J

f̂(S ∪ T)2 =
∑

U :U∩J=S

f̂(U)2.

For S 6⊆ J , these equal 0.
Now, let’s consider p-random restrictions: Pick J ⊆p [n], here every i ∈ [n] is picked

independently with probability p. Then pick Z ∈ {±1}J uniformly at random. We denote
this distribution as (J, Z) ∼ Rp. Then we can calculate

E(J,Z)∼Rp
[f̂J,z(S)] = EJ [EZ [f̂J,Z(S)]]

4

= EJ [1S⊆J f̂(S)]

= f̂(S)P(S ⊆ J)

= f̂(S)p|S|,

E(J,Z)∼Rp
[f̂J,z(S)2] = EJ [EZ [f̂J,Z(S)2]]

= EJ

[∑
U

f̂(U)21{U∩J=S}

]
=

∑
U

f̂(U)2P(U ∩ J = S)

=
∑
U⊇S

f̂(U)2p|S|(1− p)|U\S|.

Lemma 1.1.
E(J,Z)∼Rp

[I(fJ,Z)] = p · I(f).

We will prove this next time. This will allow us to analyze the total influence of a
function by first restricting some of its coordinates at random and then analyzing the total
influence of the simpler function.

5

	DNFs and Random Restrictions
	Concentration and computability of DNFs
	Random restrictions

